login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237713
Composite numbers n such that the distinct digits in n and the distinct digits in the proper divisors of n are the same.
2
125, 1255, 2510, 11009, 11099, 11255, 11379, 12326, 12955, 14379, 14397, 15033, 15303, 16325, 17482, 21109, 25105, 31007, 31503, 33011, 35213, 37127, 37921, 41303, 44011, 49319, 51367, 53491, 63013, 69413, 70319, 71057, 72013, 72517, 74341, 77011, 81767
OFFSET
1,1
COMMENTS
Since 1 is always a divisor of n, this is a subsequence of A011531. - Michel Marcus, Feb 12 2014
LINKS
EXAMPLE
125 is in the sequence because the proper divisors of 125 are {1, 5, 25} with the same digits as 125.
MATHEMATICA
Pn[n_]:=Sort[DeleteDuplicates[Flatten[IntegerDigits[Take[Divisors[n], DivisorSigma[0, n]-1]]]]]; Fn[n_]:=Sort[DeleteDuplicates[IntegerDigits[n]]]; lst={}; Do[If[!PrimeQ[n]&&Pn[n]===Fn[n], AppendTo[lst, n]], {n, 2, 10^5}]; lst
Select[Range[10^5], ! PrimeQ@# && Union@ IntegerDigits@ # == Union @@ IntegerDigits /@ Most@ Divisors@ # &] (* Giovanni Resta, Feb 12 2014 *)
PROG
(PARI) isok(n) = { my(digs = []); fordiv(n, d, if (d != n, digs = concat(digs, digits(d)))); (n != 1) && !isprime(n) && vecsort(digs, , 8) == vecsort(digits(n), , 8); } \\ Michel Marcus, Feb 12 2014
CROSSREFS
See A282755 for a variant.
Sequence in context: A204795 A352161 A243240 * A000526 A016971 A030082
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Feb 12 2014
STATUS
approved