login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237440
Quadruple Hex-primes: let f(n) = A102489(n); then sequence lists primes p such that f(p), f(f(p)). f(f(f(p))) and f(f(f(f(p)))) are also primes.
4
2, 3, 5, 7, 61, 97, 101, 257, 2531, 4783, 5683, 6317, 8963, 9463, 9497, 11593, 15683, 18757, 23687, 26251, 29611, 31271, 36011, 45497, 45979, 46853, 54869, 73379, 92557, 93761, 104173, 107857, 107981, 121607, 134047, 192091, 196853, 236729, 285599, 310081
OFFSET
1,1
COMMENTS
The sequence is a subset of sequences A103144, A237438, and A237439.
LINKS
EXAMPLE
Dec61=prime -> Hex61=Dec97=prime -> Hex97=Dec151=prime -> Hex151=Dec337=prime -> Hex337=Dec823=prime.
MATHEMATICA
qhpQ[n_]:=AllTrue[Rest[NestList[FromDigits[IntegerDigits[#], 16]&, n, 4]], PrimeQ]; Select[Prime[Range[27000]], qhpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 13 2016 *)
PROG
(PARI) isok(p)= isprime(p) && isprime(p=hd(p)) && isprime(p=hd(p)) && isprime(p=hd(p)) && isprime(p=hd(p)); \\ Michel Marcus, Feb 09 2014
CROSSREFS
Cf. A102489.
Cf. A103144 (Hex-primes), A237438 (Double Hex-primes), A237439 (Triple Hex-primes), A237441 (Quintuple Hex-primes).
Sequence in context: A244597 A237439 A048402 * A237441 A171029 A241723
KEYWORD
nonn,base
AUTHOR
Andreas Boe, Feb 07 2014
EXTENSIONS
More terms from Michel Marcus, Feb 09 2014
STATUS
approved