login
A237441
Quintuple Hex-primes: let f(n) = A102489(n); then sequence lists primes p such that f(p), f(f(p)), f(f(f(p))), f(f(f(f(p)))) and f(f(f(f(f(p))))) are also primes.
3
2, 3, 5, 7, 61, 101, 196853, 516151, 548239, 568627, 595039, 603833, 648887, 1996223, 2086907, 2487227, 3322757, 3711343, 4385137, 5226049, 5288929, 5853241, 8792039, 8796187, 8982191, 10203203, 12640297, 12664129, 12845561, 13156267, 13437481, 14342431
OFFSET
1,1
COMMENTS
The sequence is a subset of A103144, A237438, A237439 and A237440
EXAMPLE
Dec61=prime -> Hex61=Dec97=prime -> Hex97=Dec151=prime -> Hex151=Dec337=prime -> Hex337=Dec823=prime -> Hex823=Dec2083=prime.
PROG
(PARI) hd(n) = my(d = digits(n)); sum(i=1, #d, 16^(i-1)*d[#d-i+1]);
isok(p) = isprime(p) && isprime(p=hd(p)) && isprime(p=hd(p)) && isprime(p=hd(p)) && isprime(p=hd(p)) && isprime(p=hd(p)); \\ Michel Marcus, Feb 08 2014
CROSSREFS
Cf. A103144(Hex-primes), A237438(Double Hex-primes), A237439(Triple Hex-primes), A237440(Quadruple Hex-primes).
Sequence in context: A237439 A048402 A237440 * A171029 A241723 A090717
KEYWORD
nonn,base
AUTHOR
Andreas Boe, Feb 07 2014
EXTENSIONS
More terms from Michel Marcus, Feb 08 2014
STATUS
approved