login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237437
Least prime p > prime(n+1) such that p is not a square mod the first n odd primes 3, 5, 7, 11, ..., prime(n+1).
1
5, 17, 17, 17, 83, 167, 167, 227, 2273, 5297, 5297, 69467, 69467, 116387, 348563, 348563, 2004917, 5472953, 8062073, 8062073
OFFSET
1,1
COMMENTS
Least prime p > prime(n+1) such that p is a quadratic nonresidue mod the first n odd primes 3, 5, 7, 11, ..., prime(n+1).
Least odd prime p such that the Legendre symbol (p|q) = -1 for q = 3, 5, 7, 11, ..., prime(n+1).
LINKS
Wipawee Tangjai, Kodchaphon Wanichang, Montathip Srikao, and Punyanuch Kheawkrai, A Congruent Property of Gibonacci Number Modulo Prime, Int'l. J. Analysis Appl. (2023), Vol. 21, No. 24.
Wikipedia, Legendre symbol
FORMULA
a(n) = a(n+1) if and only if Legendre (a(n)|prime(n+2)) = -1.
EXAMPLE
Let f(p) = list of Legendre (p|q) for q = 3, 5, 7, 11, 13, 17, 19, 23, ...
Then f(p) is
p=3: 0, -1, -1, 1, 1, -1, -1, 1, ...
p=5: -1, 0, -1, 1, -1, -1, 1, -1, ...
p=7: 1, -1, 0, -1, -1, -1, 1, -1, ...
p=11: -1, 1, 1, 0, -1, -1, 1, -1, ...
p=13: 1, -1, -1, -1, 0, 1, -1, 1, ...
p=17: -1, -1, -1, -1, 1, 0, 1, -1, ...
p=19: 1, 1, -1, -1, -1, 1, 0, -1, ...
f(5) is the first list that begins with -1, so a(1) = 5.
f(17) is the first list that begins with -1, -1, so a(2) = 17.
MATHEMATICA
Table[p = Prime[n + 2]; While[Length[Select[Prime[Range[2, n + 1]], JacobiSymbol[p, #] == -1 &]] < n, p = NextPrime[p]]; p, {n, 1, 20}]
CROSSREFS
Cf. A237436.
Sequence in context: A303678 A303804 A304851 * A128895 A141558 A304217
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Feb 15 2014
STATUS
approved