login
A237357
The number of tilings of the 3 X 3 X (2n) room with 1 X 2 X 3 boxes.
1
1, 6, 64, 616, 5936, 57408, 554624, 5359040, 51781696, 500337216, 4834483264, 46712942656, 451361370176, 4361255727168, 42140406169664, 407179478511680, 3934350491492416, 38015456589811776, 367322368167936064, 3549233239845138496, 34294281215843786816
OFFSET
0,2
COMMENTS
The count compiles all arrangements without respect to symmetry: Stacks that are equivalent after rotations or flips through any of the 3 axes or 3 planes are counted with multiplicity.
FORMULA
G.f.: (1-x)/(-22*x^2-7*x-36*x^3+1).
MAPLE
A237357 := proc(n)
(1-x)/ (-22*x^2-7*x-36*x^3+1) ;
coeftayl(%, x=0, n) ;
end proc:
seq(A237357(n), n=0..20) ;
MATHEMATICA
CoefficientList[Series[(1 - x)/(-22 x^2 - 7 x - 36 x^3 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 08 2014 *)
LinearRecurrence[{7, 22, 36}, {1, 6, 64}, 30] (* Harvey P. Dale, Mar 20 2024 *)
CROSSREFS
Cf. A000079 (2 X 2 X n rooms), A103143 (2 X 3 X n rooms).
Sequence in context: A067447 A083225 A320528 * A230282 A186668 A025609
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Feb 07 2014
STATUS
approved