The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A230282 Largest k such that (k*n)! >= (k!)^(n+1). 1
 1, 1, 6, 64, 679, 8468, 126784, 2238565, 45605124, 1053117974, 27182818156, 775557529509, 24236473829015, 823299898542083, 30205566231626957, 1190319005015526817, 50143449209799256306, 2248672171655330927835 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA For n > 1, a(n) = floor(e*(n^n) - ((n^2-1)*log(n) + n*(1+log(2*Pi)))/2) [conjectural, but verified for all n in 2..5000]. - Jon E. Schoenfield, Oct 22 2013 EXAMPLE Biggest k such that (3*k)! >= k!^4 is k = 64, so a(3) = 64. a(10) = 27182818156 because k = 27182818156 satisfies the inequality (k*10)! >= (k!)^11, but k = 27182818157 does not. To verify this, note that taking the logarithm of each side of the inequality gives log((k*10)!) >= 11*log(k!), and use the series expression log(m!) = log(2*Pi*m)/2 + m*log(m) - m + (1/12)/m - (1/360)/m^3 + (1/1260)/m^5 - ... (where the numerators and denominators of the fractions 1/12, -1/360, 1/1260, etc., are from A046968 and A046969, respectively), to get, at k = 27182818156, log(271828181560!) = 6884982704601.26... for the left hand side of the inequality, and the slightly smaller result 11*log(27182818156!) = 6884982704600.83... for the right hand side; then repeat the calculations using k = 27182818157, and observe that this makes the right hand side slightly larger than the left hand side. - Jon E. Schoenfield, Oct 23 2013 MATHEMATICA Table[k = 0; While[(k n)! >= (k!)^(n + 1), k++]; k - 1, {n, 0, 4}] (* T. D. Noe, Oct 18 2013 *) PROG (Python) import math for n in range(8):   for k in range(10000000):     if math.factorial(n*k) < math.factorial(k)**(n+1):       print k-1,       break CROSSREFS Cf. A000142, A065027, A136432, A230319. Sequence in context: A083225 A320528 A237357 * A186668 A025609 A309186 Adjacent sequences:  A230279 A230280 A230281 * A230283 A230284 A230285 KEYWORD nonn AUTHOR Alex Ratushnyak, Oct 14 2013 EXTENSIONS a(7)-a(17) from Jon E. Schoenfield, Oct 22 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 1 21:18 EDT 2022. Contains 357173 sequences. (Running on oeis4.)