login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237249
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the maximum plus the upper median minus the lower median minus the minimum of every 2X2 subblock differing from its horizontal and vertical neighbors by exactly one
8
81, 344, 344, 1488, 2064, 1488, 6496, 12600, 12600, 6496, 28176, 78420, 108652, 78420, 28176, 121088, 477144, 974864, 974864, 477144, 121088, 523776, 2908188, 8433384, 12987512, 8433384, 2908188, 523776, 2286592, 17766000, 72877504
OFFSET
1,1
COMMENTS
Table starts
.......81........344.........1488...........6496............28176
......344.......2064........12600..........78420...........477144
.....1488......12600.......108652.........974864..........8433384
.....6496......78420.......974864.......12987512........163330432
....28176.....477144......8433384......163330432.......2917434432
...121088....2908188.....72877504.....2059810392......51846897952
...523776...17766000....629104640....26060799904.....936224849104
..2286592..110572200...5642567936...355097523776...18672666559360
..9917952..672773040..48822536832..4532945330880..339066019397152
.42622976.4100545080.421991535616.57916057781984.6092798602997504
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 352*a(n-4) for n>5
k=2: a(n) = 1410*a(n-4) for n>6
k=3: a(n) = 11576*a(n-4) -33493888*a(n-8) for n>11
k=4: [order 16] for n>20
k=5: [order 36] for n>41
EXAMPLE
Some solutions for n=3 k=4
..0..0..0..0..1....0..0..1..0..0....0..2..0..1..2....0..0..0..0..2
..2..0..1..1..1....1..0..1..1..1....0..2..1..0..2....1..1..2..0..1
..0..1..0..1..1....1..2..0..2..1....1..0..1..1..1....0..1..0..1..2
..1..2..0..1..0....0..2..2..1..0....2..1..1..1..2....0..1..1..2..2
CROSSREFS
Sequence in context: A180090 A217967 A237384 * A236096 A237377 A237242
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 05 2014
STATUS
approved