login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237384
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the maximum plus the minimum minus the upper median minus the lower median of every 2X2 subblock differing from its horizontal and vertical neighbors by exactly one
9
81, 344, 344, 1472, 2064, 1472, 6368, 12408, 12408, 6368, 27280, 76188, 104248, 76188, 27280, 115584, 455160, 912912, 912912, 455160, 115584, 494592, 2721900, 7660840, 11767448, 7660840, 2721900, 494592, 2139648, 16378560, 64312576
OFFSET
1,1
COMMENTS
Table starts
.......81........344.........1472...........6368............27280
......344.......2064........12408..........76188...........455160
.....1472......12408.......104248.........912912..........7660840
.....6368......76188.......912912.......11767448........141627680
....27280.....455160......7660840......141627680.......2375768088
...115584....2721900.....64312576.....1709556016......39693722016
...494592...16378560....541081120....20834106592.....680588692128
..2139648..100568160...4737777088...274803913264...12934636122240
..9166080..600811200..39760171616..3352960252480..219580118935904
.38836224.3592908000.333806884096.40937682523424.3692772114256256
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 336*a(n-4) for n>5
k=2: a(n) = 1320*a(n-4) for n>6
k=3: a(n) = 10380*a(n-4) -26935616*a(n-8) for n>11
k=4: [order 16] for n>20
k=5: [order 36] for n>41
EXAMPLE
Some solutions for n=3 k=4
..0..1..0..0..0....0..1..0..1..0....0..1..0..0..2....0..0..0..1..2
..1..2..2..2..1....1..1..0..0..1....0..1..1..1..2....0..2..1..0..0
..0..2..0..1..2....0..0..0..0..0....2..0..0..1..2....1..0..1..1..1
..2..2..1..0..0....1..0..0..1..1....2..0..1..0..0....0..1..1..1..2
CROSSREFS
Sequence in context: A128607 A180090 A217967 * A237249 A236096 A237377
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 07 2014
STATUS
approved