login
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the maximum plus the upper median minus the lower median minus the minimum of every 2X2 subblock differing from its horizontal and vertical neighbors by exactly one
8

%I #4 Feb 05 2014 06:23:54

%S 81,344,344,1488,2064,1488,6496,12600,12600,6496,28176,78420,108652,

%T 78420,28176,121088,477144,974864,974864,477144,121088,523776,2908188,

%U 8433384,12987512,8433384,2908188,523776,2286592,17766000,72877504

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the maximum plus the upper median minus the lower median minus the minimum of every 2X2 subblock differing from its horizontal and vertical neighbors by exactly one

%C Table starts

%C .......81........344.........1488...........6496............28176

%C ......344.......2064........12600..........78420...........477144

%C .....1488......12600.......108652.........974864..........8433384

%C .....6496......78420.......974864.......12987512........163330432

%C ....28176.....477144......8433384......163330432.......2917434432

%C ...121088....2908188.....72877504.....2059810392......51846897952

%C ...523776...17766000....629104640....26060799904.....936224849104

%C ..2286592..110572200...5642567936...355097523776...18672666559360

%C ..9917952..672773040..48822536832..4532945330880..339066019397152

%C .42622976.4100545080.421991535616.57916057781984.6092798602997504

%H R. H. Hardin, <a href="/A237249/b237249.txt">Table of n, a(n) for n = 1..144</a>

%F Empirical for column k:

%F k=1: a(n) = 352*a(n-4) for n>5

%F k=2: a(n) = 1410*a(n-4) for n>6

%F k=3: a(n) = 11576*a(n-4) -33493888*a(n-8) for n>11

%F k=4: [order 16] for n>20

%F k=5: [order 36] for n>41

%e Some solutions for n=3 k=4

%e ..0..0..0..0..1....0..0..1..0..0....0..2..0..1..2....0..0..0..0..2

%e ..2..0..1..1..1....1..0..1..1..1....0..2..1..0..2....1..1..2..0..1

%e ..0..1..0..1..1....1..2..0..2..1....1..0..1..1..1....0..1..0..1..2

%e ..1..2..0..1..0....0..2..2..1..0....2..1..1..1..2....0..1..1..2..2

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Feb 05 2014