login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A236999 Odd part of n*(n+3)/2-1 (A034856). 3
1, 1, 1, 13, 19, 13, 17, 43, 53, 1, 19, 89, 103, 59, 67, 151, 169, 47, 13, 229, 251, 137, 149, 323, 349, 47, 101, 433, 463, 247, 263, 559, 593, 157, 83, 701, 739, 389, 409, 859, 901, 59, 247, 1033, 1079, 563, 587, 1223, 1273, 331, 43, 1429, 1483 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Also odd part of A176126(n-1) and of  |A127276(n-1)|, n>=3.

Proof. By A127276 and A001788, we have odd part(A176126(n))=odd part(|A127276(n)|) = odd part(n*(n+1)-4), {odd part(A176126(n-1)), n>=3}={odd part((n+1)*(n+2)-4), n>=1}.

Let n=2^b*k, where k=k(n) is odd.

Then {odd part(A176126(n-1)), n>=3}={odd part(2^b*k+1)*(2^b*k+2)-4)}={odd part(2^(2*b)*k^2+3*2^b*k-2)}. Hence, if b>0, then {odd part(A176126(n-1), n>=3)= {odd part(2^(2*b-1)*k^2+3*2^(b-1)*k-1)}.

On the other hand, in this case odd part(a(n))=odd part(2^(b-1)*k*(2^b*k+3)-1)=odd part(2^(2*b-1)*k^2+3*2^(b-1)*k-1). It is left to consider the case of odd n. Setting n=2*m-1, m>=1, we easily find that for both expressions the odd part equals odd part(2*m^2+m-2).

The smallest prime divisor of a(n) is more than or equal to 13.

LINKS

Peter J. C. Moses, Table of n, a(n) for n = 1..1000

MATHEMATICA

Map[#/2^IntegerExponent[#, 2]&[(# (#+3)/2-1)]&, Range[100]] (* Peter J. C. Moses, Feb 02 2014 *)

CROSSREFS

Cf. A000265, A034856, A176126, A127276, A001788.

Sequence in context: A218626 A119149 A217658 * A216639 A171098 A118845

Adjacent sequences:  A236996 A236997 A236998 * A237000 A237001 A237002

KEYWORD

nonn,easy

AUTHOR

Vladimir Shevelev, Feb 02 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 22 16:15 EDT 2021. Contains 345386 sequences. (Running on oeis4.)