login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236998
a(n) = |{0 < k < n/2: phi(k)*phi(n-k) is a square}|, where phi(.) is Euler's totient function.
8
0, 0, 1, 0, 0, 1, 2, 0, 2, 2, 1, 1, 2, 1, 1, 1, 1, 3, 3, 2, 2, 4, 3, 1, 3, 1, 3, 1, 1, 2, 2, 1, 4, 4, 3, 3, 1, 1, 5, 2, 3, 7, 2, 5, 3, 4, 3, 2, 7, 3, 2, 3, 4, 6, 2, 1, 7, 5, 3, 2, 2, 4, 4, 2, 6, 4, 3, 5, 5, 7, 4, 3, 2, 6, 4, 2, 7, 5, 5, 4, 4, 2, 4, 8, 2, 7, 5, 7, 3, 3, 8, 6, 7, 5, 7, 3, 9, 3, 7, 5
OFFSET
1,7
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 8.
(ii) If n > 20, then phi(k)*phi(n-k) + 1 is a square for some 0 < k < n/2.
(iii) If n > 1 is not among 4, 7, 60, 199, 267, then k*phi(n-k) is a square for some 0 < k < n.
We have verified part (i) of the conjecture for n up to 2*10^6.
EXAMPLE
a(17) = 1 since phi(5)*phi(12) = 4*4 = 4^2.
a(24) = 1 since phi(4)*phi(20) = 2*8 = 4^2.
a(56) = 1 since phi(8)*phi(48) = 4*16 = 8^2.
MATHEMATICA
SQ[n_]:=IntegerQ[Sqrt[n]]
p[n_, k_]:=SQ[EulerPhi[k]*EulerPhi[n-k]]
a[n_]:=Sum[If[p[n, k], 1, 0], {k, 1, (n-1)/2}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 02 2014
STATUS
approved