login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236526
Numbers k such that k^3 + k +- 1 are twin primes.
2
3, 15, 18, 21, 39, 87, 117, 120, 135, 243, 360, 366, 381, 426, 429, 615, 642, 723, 879, 1002, 1023, 1170, 1173, 1224, 1458, 1506, 1518, 1530, 1731, 1896, 1920, 1965, 2007, 2025, 2058, 2133, 2160, 2376, 2379, 2382, 2406, 2553, 2577, 2673, 2703, 2727
OFFSET
1,1
COMMENTS
The only prime in this sequence is a(1) = 3.
LINKS
EXAMPLE
381^3 + 381 +- 1 (55305961 and 55305959, respectively) are both prime. Thus, 381 is a member of this sequence.
MATHEMATICA
Select[Range[3000], PrimeQ[#^3 + # - 1] && PrimeQ[#^3 + # + 1] &] (* Vincenzo Librandi, Dec 26 2015 *)
Select[Range[3000], AllTrue[#^3+#+{1, -1}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 23 2020 *)
PROG
(Python)
import sympy
from sympy import isprime
{print(n) for n in range(10**4) if isprime(n**3+n-1) and isprime(n**3+n+1)}
(Magma) [n: n in [1..5*10^3] |IsPrime(n^3+n-1) and IsPrime(n^3 +n+1)]; // Vincenzo Librandi, Dec 26 2015
(PARI) isok(n) = isprime(n^3+n+1) && isprime(n^3+n-1); \\ Michel Marcus, Dec 27 2015
CROSSREFS
Intersection of A049407 and A236475.
Sequence in context: A163785 A080793 A077225 * A039559 A045753 A022381
KEYWORD
nonn
AUTHOR
Derek Orr, Jan 27 2014
STATUS
approved