login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k^3 + k +- 1 are twin primes.
2

%I #30 Sep 08 2022 08:46:06

%S 3,15,18,21,39,87,117,120,135,243,360,366,381,426,429,615,642,723,879,

%T 1002,1023,1170,1173,1224,1458,1506,1518,1530,1731,1896,1920,1965,

%U 2007,2025,2058,2133,2160,2376,2379,2382,2406,2553,2577,2673,2703,2727

%N Numbers k such that k^3 + k +- 1 are twin primes.

%C The only prime in this sequence is a(1) = 3.

%H Amiram Eldar, <a href="/A236526/b236526.txt">Table of n, a(n) for n = 1..10000</a>

%e 381^3 + 381 +- 1 (55305961 and 55305959, respectively) are both prime. Thus, 381 is a member of this sequence.

%t Select[Range[3000], PrimeQ[#^3 + # - 1] && PrimeQ[#^3 + # + 1] &] (* _Vincenzo Librandi_, Dec 26 2015 *)

%t Select[Range[3000],AllTrue[#^3+#+{1,-1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Feb 23 2020 *)

%o (Python)

%o import sympy

%o from sympy import isprime

%o {print(n) for n in range(10**4) if isprime(n**3+n-1) and isprime(n**3+n+1)}

%o (Magma) [n: n in [1..5*10^3] |IsPrime(n^3+n-1) and IsPrime(n^3 +n+1)]; // _Vincenzo Librandi_, Dec 26 2015

%o (PARI) isok(n) = isprime(n^3+n+1) && isprime(n^3+n-1); \\ _Michel Marcus_, Dec 27 2015

%Y Intersection of A049407 and A236475.

%K nonn

%O 1,1

%A _Derek Orr_, Jan 27 2014