login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236484
Primes p with p + 2, prime(p) + 2, prime(prime(p)) + 2, prime(prime(prime(p))) + 2, prime(prime(prime(prime(p)))) + 2 all prime.
4
2371709, 3406727, 8890667, 45809639, 57219497, 58674437, 73793831, 78934589, 159935561, 207223409
OFFSET
1,1
COMMENTS
By the general conjecture in A236481, this sequence should have infinitely many terms.
LINKS
EXAMPLE
a(1) = 2371709 with 2371709, 2371709 + 2 = 2371711, prime(2371709) + 2 = 38917889 + 2 = 38917891, prime(38917889) + 2 = 754394519 + 2 = 754394521, prime(754394519) + 2 = 16978533527 + 2 = 16978533529 and prime(16978533527) + 2 = 437397516929 + 2 = 437397516931 all prime.
MATHEMATICA
p[n_]:=p[n]=PrimeQ[n+2]&&PrimeQ[Prime[n]+2]&&PrimeQ[Prime[Prime[n]]+2]&&PrimeQ[Prime[Prime[Prime[n]]]+2]&&PrimeQ[Prime[Prime[Prime[Prime[n]]]]+2]
n=0; Do[If[p[Prime[m]], n=n+1; Print[n, " ", Prime[m]]], {m, 1, 10^7}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 27 2014
STATUS
approved