login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236483
a(n) = |{0 < k < n-2: p(k) + 2^(phi(n-k)/2) is prime}|, where p(.) is the partition function (A000041) and phi(.) is Euler's totient function.
1
0, 0, 0, 1, 1, 2, 3, 2, 3, 5, 4, 3, 6, 1, 6, 5, 7, 7, 5, 6, 4, 6, 5, 4, 7, 4, 6, 5, 5, 6, 9, 6, 13, 6, 10, 5, 6, 7, 4, 10, 9, 12, 6, 12, 3, 8, 8, 9, 11, 8, 11, 7, 11, 7, 8, 8, 9, 8, 10, 10, 9, 9, 14, 8, 15, 8, 11, 13, 12, 12, 15, 13, 12, 8, 11, 12, 10, 11, 12, 12, 13, 8, 12, 14, 8, 13, 10, 8, 8, 12, 8, 15, 11, 10, 11, 11, 13, 14, 10, 8
OFFSET
1,6
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 3.
(ii) For any integer n > 1, there is a positive integer k < n such that p(k)*2^(phi(n-k)) + 1 is prime.
(iii) For any integer n > 1 not among 6, 23, 42, there is a positive integer k < n such that 2*p(k) + p(n-k) is prime.
Clearly, part (i) of the conjecture implies that there are infinitely many primes of the form p(k) + 2^m, where k and m are positive integers.
LINKS
EXAMPLE
a(14) = 1 since p(7) + 2^(phi(7)/2) = 15 + 2^3 = 23 is prime.
MATHEMATICA
a[n_]:=Sum[If[PrimeQ[PartitionsP[k]+2^(EulerPhi[n-k]/2)], 1, 0], {k, 1, n-3}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 27 2014
STATUS
approved