login
A236444
Natural numbers not in A236019.
2
1, 3, 4, 6, 7, 9, 11, 12, 14, 16, 18, 19, 21, 23, 25, 27, 29, 30, 32, 34, 36, 38, 40, 42, 44, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129
OFFSET
1,2
COMMENTS
A236019(n+1) - A236019(n) = 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3,... . Only 2's and 3's ?
a(n+1) - a(n) = 2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1,... . Only 2's and 1's ?
d(n) = A236019(n) - a(n) = -1, -1, 1, 2, 3, 4, 4, 5, 6, 6, 6, 7, 7,... .
Nondecreasing numbers?
LINKS
EXAMPLE
Irregular triangle by consecutive odds and evens.
1, 3,
4, 6,
7, 9, 11,
12, 14, 16, 18,
19, 21, 23, 25, 27, 29,
30, 32, 34, 36, 38, 40, 42, 44,
etc.
Hence the unknown sequence b(n)=2, 2, 3, 4, 6, 8, 12, 15,... .
MATHEMATICA
$RecursionLimit = 1000; b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i<1, 0, b[n, i-1, t]+If[i>n, 0, b[n-i, i, t-If[t>0 && PrimeQ[i], 1, 0]]]]]; a[n_] := a[n] = Module[{k}, For[k=a[n-1], b[k, k, n]<n, k++]; k]; a[0]=0; A236019 = Table[a[n], {n, 0, 100}] ; A236444 = Complement[Range[A236019 // Last], A236019] (* Jean-François Alcover, Dec 17 2014, after Alois P. Heinz *)
CROSSREFS
Complement of A236019.
Sequence in context: A059552 A047516 A247425 * A286809 A352178 A244239
KEYWORD
nonn
AUTHOR
Paul Curtz, Jan 26 2014
EXTENSIONS
Offset corrected by Michel Marcus, Feb 12 2018
STATUS
approved