login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A059552
Beatty sequence for Gamma(1/3)/(Gamma(1/3)-1).
2
1, 3, 4, 6, 7, 9, 11, 12, 14, 15, 17, 19, 20, 22, 23, 25, 27, 28, 30, 31, 33, 35, 36, 38, 39, 41, 43, 44, 46, 47, 49, 51, 52, 54, 55, 57, 59, 60, 62, 63, 65, 67, 68, 70, 71, 73, 74, 76, 78, 79, 81, 82, 84, 86, 87, 89, 90, 92, 94, 95, 97, 98, 100, 102, 103, 105, 106, 108
OFFSET
1,2
LINKS
Aviezri S. Fraenkel, Jonathan Levitt, and Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.
Eric Weisstein's World of Mathematics, Beatty Sequence
FORMULA
a(n) = floor(n*Gamma(1/3)/(Gamma(1/3)-1)). - Michel Marcus, Jan 04 2015
MATHEMATICA
Floor[Range[100]*(1 + 1/(Gamma[1/3] - 1))] (* Paolo Xausa, Jul 05 2024 *)
PROG
(PARI) { default(realprecision, 100); b=gamma(1/3)/(gamma(1/3) - 1); for (n = 1, 2000, write("b059552.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
(Magma) [Floor(n*Gamma(1/3)/(Gamma(1/3)-1)): n in [1..80]]; // Vincenzo Librandi, Jan 06 2015
CROSSREFS
Beatty complement is A059551.
Cf. A073005.
Sequence in context: A182770 A347792 A330095 * A047516 A247425 A236444
KEYWORD
nonn,easy
AUTHOR
Mitch Harris, Jan 22 2001
STATUS
approved