login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236343
Expansion of (1 - x + 2*x^2 - x^3) / ((1 - x)^2 * (1 - x^3)) in powers of x.
2
1, 1, 3, 5, 6, 9, 12, 14, 18, 22, 25, 30, 35, 39, 45, 51, 56, 63, 70, 76, 84, 92, 99, 108, 117, 125, 135, 145, 154, 165, 176, 186, 198, 210, 221, 234, 247, 259, 273, 287, 300, 315, 330, 344, 360, 376, 391, 408, 425, 441, 459, 477, 494, 513, 532, 550, 570, 590
OFFSET
0,3
COMMENTS
The sequence is a quasi-polynomial sequence.
Given a sequence of Laurent polynomials defined by b(n) = (b(n-2)^2 - b(n-1)*b(n-3) * 2/x) / b(n-4), b(-2) = x, b(-4) = -b(-3) = -b(-1) = 1. Then the denominator of b(n) is x^a(n).
FORMULA
0 = a(n)*(a(n+2) + a(n+3)) + a(n+1)*(-2*a(n+2) - a(n+3) + a(n+4)) + a(n+2)*(a(n+2) - 2*a(n+3) + a(n+4)) for all n in Z.
G.f.: (1 - x + 2*x^2 - x^3) / ((1 - x)^2 * (1 - x^3)).
Second difference is period 3 sequence [2, 0, -1, ...].
a(n) = 2*a(n-3) + a(n-6) + 3 = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5).
a(-6-n) = A236337(n).
From Peter Bala, Feb 11 2019: (Start)
a(3*n) = (1/2)*(n + 1)*(3*n + 2);
a(3*n+1) = (1/2)*(n + 1)*(3*n + 4) - 1;
a(3*n+2) = (1/2)*(n + 1)*(3*n + 6). (End)
EXAMPLE
G.f. = 1 + x + 3*x^2 + 5*x^3 + 6*x^4 + 9*x^5 + 12*x^6 + 14*x^7 + 18*x^8 + ...
MAPLE
seq(coeff(series((1-x+2*x^2-x^3)/((1-x)^2*(1-x^3)), x, n+1), x, n), n = 0 .. 60); # Muniru A Asiru, Feb 12 2019
MATHEMATICA
CoefficientList[Series[(1-x+2*x^2-x^3)/((1-x)^2*(1-x^3)), {x, 0, 60}], x] (* G. C. Greubel, Aug 07 2018 *)
PROG
(PARI) {a(n) = (n * (n+5) + [6, 0, 4][n%3 + 1]) / 6};
(PARI) {a(n) = if( n<0, polcoeff( x^2 * (-1 + 2*x - x^2 + x^3) / ((1 - x)^2 * (1 - x^3)) + x * O(x^-n), -n), polcoeff( (1 - x + 2*x^2 - x^3) / ((1 - x)^2 * (1 - x^3)) + x * O(x^n), n))};
(Magma) m:=60; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+2*x^2-x^3)/((1-x)^2*(1-x^3)))); // G. C. Greubel, Aug 07 2018
(Sage) ((1-x+2*x^2-x^3)/((1-x)^2*(1-x^3))).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Feb 12 2019
CROSSREFS
Cf. A236337. Trisections are A000326, A095794, A045943.
Sequence in context: A323115 A285377 A192577 * A325420 A168063 A039873
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Jan 22 2014
STATUS
approved