login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192577
Numbers n such that the arithmetic mean of the unitary divisors of n is a prime number.
1
3, 5, 6, 9, 12, 13, 25, 37, 48, 61, 73, 81, 121, 157, 193, 277, 313, 361, 397, 421, 457, 541, 613, 625, 661, 673, 733, 757, 768, 841, 877, 997, 1093, 1153, 1201, 1213, 1237, 1321, 1381, 1453, 1621, 1657, 1753, 1873, 1933, 1993, 2017, 2137, 2341, 2401, 2473
OFFSET
1,1
COMMENTS
Subsequence of A103826.
Similar to A187073, but considering unitary divisors, not prime divisors.
The odd terms of the sequence are: (1) the terms of A005383 (numbers n such that both n and (n+1)/2 are primes) and (2) the terms of A192618 (prime powers p^k with even exponents k>0 such that (1+p^k)/2 is prime).
[Note that A034448(n) and A034444(n) are multiplicative, so the arithmetic mean A034448(n)/A034444(n) is multiplicative with a(p^e) = (1+p^e)/2.]
The even terms of the sequence are 6, 12, 48, 768, 196608,... (no others < 10^10) with formula n = 3*2^(2^(k-1)) and averages 3, 5, 17, 257, 65537, ... (Fermat numbers, A000215).
LINKS
A. Roldan Martinez, Numeros y hoja de calculo
EXAMPLE
48 has unitary divisors 1, 3, 16, 48 and (1+3+16+48)/4 = 17 is prime, therefore 48 is in the sequence.
PROG
(Magma) UnitaryDivisors:=func< n | [ d: d in Divisors(n) | Gcd(d, n div d) eq 1 ] >; [ n: n in [1..2500] | IsPrime(k) and s mod #U eq 0 where k is s div #U where s is &+U where U is UnitaryDivisors(n) ]; // Klaus Brockhaus, Jul 09 2011
(PARI) usigma(n)= {local(f, u=1); f=factor(n); for(i=1, matsize(f)[1], u*=(1+ f[i, 1]^f[i, 2])); return(u)}
ud(n)= {local (f, u); f=factor(n); u=2^(matsize(f)[1]); return(u) }
{ for (n=2, 10^4, c=usigma(n)/ud(n); if (c==truncate(c), if(isprime(c), print1(n, ", ")))) }
// Antonio Roldán, Oct 08 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Antonio Roldán, Jul 04 2011
STATUS
approved