login
A103826
Unitary arithmetic numbers (those for which the arithmetic mean of the unitary divisors is an integer).
11
1, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 75, 76, 77, 78, 79, 81, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93
OFFSET
1,2
COMMENTS
The arithmetic means of the unitary arithmetic numbers are in A103827.
From Amiram Eldar, Mar 10 2023: (Start)
Union of the odd numbers (A005408) and twice the numbers that are not the sum of 2 squares (A022544).
The asymptotic density of this sequence is 1. (End)
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
12 is a unitary arithmetic number because the unitary divisors of 12 are 1,3,4 and 12 and (1+3+4+12)/4=5 is an integer.
MAPLE
with(numtheory):unitdiv:=proc(n) local A, k: A:={}: for k from 1 to tau(n) do if gcd(divisors(n)[k], n/divisors(n)[k])=1 then A:=A union {divisors(n)[k]} else A:=A fi od end:utau:=n->nops(unitdiv(n)):usigma:=n->add(unitdiv(n)[j], j=1..nops(unitdiv(n))): p:=proc(n) if type(usigma(n)/utau(n), integer)=true then n else fi end:seq(p(n), n=1..103);
MATHEMATICA
udiQ[n_]:=IntegerQ[Mean[Select[Divisors[n], GCD[#, n/#]==1&]]]; Select[ Range[ 100], udiQ] (* Harvey P. Dale, May 20 2012 *)
Select[Range[100], IntegerQ[Times @@ ((1 + Power @@@ FactorInteger[#])/2)] &] (* Amiram Eldar, Jun 14 2022 *)
PROG
(PARI) is(n)=my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2]+1)%2^#f~==0 \\ Charles R Greathouse IV, Sep 01 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 17 2005
STATUS
approved