OFFSET
1,1
COMMENTS
All the terms in the sequence are congruent to 2 mod 3.
The constants in the definition (8, 86 and 864) are the concatenation of successive even digits 8,6 and 4.
LINKS
K. D. Bajpai, Table of n, a(n) for n = 1..4796
EXAMPLE
a(1) = 23 is a prime: 23+8 = 31, 23+86 = 109 and 23+864 = 887 are also prime.
a(2) = 743 is a prime: 743+8 = 751, 743+86 = 829 and 743+864 = 1607 are also prime.
MAPLE
KD:= proc() local a, b, d, e, f; a:= ithprime(n); b:=a+8; d:=a+86; e:=a+864; if isprime(b)and isprime(d)and isprime(e) then return (a) :fi; end: seq(KD(), n=1..15000);
MATHEMATICA
KD = {}; Do[p = Prime[n]; If[PrimeQ[p + 8] && PrimeQ[p + 86] && PrimeQ[p + 864], AppendTo[KD, p]], {n, 15000}]; KD
c=0; p=Prime[n]; Do[If[PrimeQ[p+8]&&PrimeQ[p+86]&&PrimeQ[p+864], c=c+1; Print[c, " ", p]], {n, 1, 5*10^6}]; (*b-file*)
PROG
(PARI) s=[]; forprime(p=2, 90000, if(isprime(p+8) && isprime(p+86) && isprime(p+864), s=concat(s, p))); s \\ Colin Barker, Apr 21 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Apr 21 2014
STATUS
approved