The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A235384 Number of involutions in the group Aff(Z/nZ). 2
 2, 4, 6, 6, 8, 8, 16, 10, 12, 12, 24, 14, 16, 24, 28, 18, 20, 20, 36, 32, 24, 24, 64, 26, 28, 28, 48, 30, 48, 32, 52, 48, 36, 48, 60, 38, 40, 56, 96, 42, 64, 44, 72, 60, 48, 48, 112, 50, 52, 72, 84, 54, 56, 72, 128, 80, 60, 60, 144, 62, 64, 80, 100, 84 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS Aff(Z/nZ) is the group of functions on Z/nZ of the form x->ax+b where a and b are elements of Z/nZ and gcd(a,n)=1. Since Aff(Z/nZ) is isomorphic to the automorphism group of the dihedral group with 2n elements (when n>=3), this is the number of automorphisms of the dihedral group with 2n elements that have order 1 or 2. The sequence is multiplicative: a(k*m) = a(k)*a(m) if m and k are coprime. When n=26, this is the number of affine ciphers where encryption and decryption use the same function. LINKS Alois P. Heinz, Table of n, a(n) for n = 2..10000 K. K. A. Cunningham, Tom Edgar, A. G. Helminck, B. F. Jones, H. Oh, R. Schwell and J. F. Vasquez, On the Structure of Involutions and Symmetric Spaces of Dihedral Groups, Note di Mat., Volume 34, No. 2, 2014. FORMULA Suppose n = 2^m*p_1^(r_1)*p_2^(r_2)*...*p_k^(r_k) where each p_i>2 is prime, r_i>0 for all i, and m>=0 is the prime factorization of n, then: ...a(n) = Product_{1<=i<=k} (p_i^(r_i)+1) if m=0, ...a(n) = 2*Product_{1<=i<=k} (p_i^(r_i)+1) if m=1, ...a(n) = 6*Product_{1<=i<=k} (p_i^(r_i)+1) if m=2, ...a(n) = (4+2^(m-1)+2^m)*Product_{1<=i<=k} (p_i^(r_i)+1) if m>=3. a(n) = Sum_{a in row(n) of A228179} gcd(a+1,n). Sum_{k=1..n} a(k) ~ c * n^2, where c = zeta(2)/(2*zeta(3)) = 0.684216... (A335005). - Amiram Eldar, Dec 05 2022 EXAMPLE Since 18 = 2*3^2, we get a(18) = 2*(3^2+1) = 20. Since 120 = 2^3*3*5, we have a(120) = (4+2^2+2^3)*(3+1)*(5+1) = 384. MAPLE a:= n-> add(`if`(irem(k^2, n)=1, igcd(n, k+1), 0), k=1..n-1): seq(a(n), n=2..100); # Alois P. Heinz, Jan 20 2014 MATHEMATICA a[n_] := Sum[If[Mod[k^2, n] == 1, GCD[n, k+1], 0], {k, 1, n-1}]; Table[a[n], {n, 2, 100}] (* Jean-François Alcover, Mar 24 2014, after Alois P. Heinz *) f[p_, e_] := p^e + 1; f[2, 1] = 2; f[2, 2] = 6; f[2, e_] := 3*2^(e - 1) + 4; a = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100, 2] (* Amiram Eldar, Dec 05 2022 *) PROG (Sage) def a(n): L=list(factor(n)) if L==2: m=L L.pop(0) else: m=0 order=prod([x^x+1 for x in L]) if m==1: order=2*order elif m==2: order=6*order elif m>=3: order=(4+2^(m-1)+2^m)*order return order [a(i) for i in [2..100]] (Sage) def b(n): sum = 0 for a in [x for x in range(n) if ((x^2) % n == 1)]: sum += gcd(a+1, n) return sum [b(i) for i in [2..100]] (PARI) A034448(n, f=factor(n))=factorback(vector(#f~, i, f[i, 1]^f[i, 2]+1)) a(n)=my(m=valuation(n, 2)); if(m==0, 1, m==1, 2, m==2, 6, 4+3<<(m-1))*A034448(n>>m) \\ Charles R Greathouse IV, Jul 29 2016 CROSSREFS Cf. A002618, A228179, A147848, A060594, A283796, A335005. Sequence in context: A267460 A092989 A065558 * A342597 A035280 A244367 Adjacent sequences: A235381 A235382 A235383 * A235385 A235386 A235387 KEYWORD nonn,easy,look,mult,nice AUTHOR Tom Edgar, Jan 08 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 5 16:14 EST 2023. Contains 360086 sequences. (Running on oeis4.)