|
|
A234798
|
|
Numbers k such that (k^i)+7 for 1<=i<=7 are seven prime numbers.
|
|
1
|
|
|
0, 3981186, 146202480, 1165139284, 2002776304, 5677052574, 9441118506, 13199287564, 14655461200, 21663769144, 23911959136, 28132616434, 29959257966, 34716681516, 35619315204, 35690387094, 38966503234, 42887165056, 45425679640, 47063988520, 51444908350, 53558122980
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Conjecture: the sequence is infinite.
|
|
LINKS
|
|
|
EXAMPLE
|
0 is in the sequence since (0^i)+7 = 7 is prime for i>0.
3981186 is in the sequence because the following seven numbers are primes: 3981186+7, 3981186^2+7, ..., 3981186^7+7.
|
|
PROG
|
(Java)
import java.math.*;
public static void main (String[] args) {
BigInteger c7 = BigInteger.valueOf(7);
for (long i=0; ; i+=2) {
if (!BigInteger.valueOf(i+7).isProbablePrime(80))
continue;
BigInteger bi = BigInteger.valueOf(i), b=bi;
long k;
for (k=1; k<7; ++k) {
b = b.multiply(bi);
if (!b.add(c7).isProbablePrime(80)) break;
}
if (k==7) System.out.printf("%d, ", i);
}
}
}
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,hard
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|