OFFSET
4,1
COMMENTS
Cardinality of the Weyl alternation set corresponding to the zero-weight in the adjoint representation of the Lie algebra of type D and rank n.
LINKS
P. E. Harris, Combinatorial problems related to Kostant's weight multiplicity formula, PhD Dissertation, University of Wisconsin-Milwaukee, 2012.
P. E. Harris, E. Insko, and L. K. Williams, The adjoint representation of a Lie algebra and the support of Kostant's weight multiplicity formula, arXiv preprint arXiv:1401.0055 [math.RT], 2013.
B. Kostant, A Formula for the Multiplicity of a Weight, Proc Natl Acad Sci U S A. 1958 June; 44(6): 588-589.
Index entries for linear recurrences with constant coefficients, signature (1,1,3,1).
FORMULA
EXAMPLE
For n = 8, a(n) = 107+73 = 180 and a(n) = 3(34) + 2(14) + 6(7) + 2(4) = 180.
MAPLE
r:=proc(n::nonnegint)
if n<=3 then return 0:
elif n=4 then return 4:
elif n=5 then return 7:
elif n=6 then return 14:
elif n=7 then return 34:
else return
r(n-1)+r(n-2)+3*r(n-3)+r(n-4):
end if;
end proc:
a:=proc(n::nonnegint)
if n<=3 then return 0:
elif n=4 then return 9:
elif n=5 then return 18:
elif n=6 then return 35:
elif n=5 then return 82:
else return
3*r(n-1)+2*r(n-2)+6*r(n-3)+2*r(n-4):
end if;
end proc:
MATHEMATICA
LinearRecurrence[{1, 1, 3, 1}, {9, 18, 35, 82}, 30] (* Jean-François Alcover, Dec 06 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Erik Insko, Dec 28 2013
EXTENSIONS
More terms from Ralf Stephan, Jan 05 2014
STATUS
approved