login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234598
Cardinality of the Weyl alternation set corresponding to the zero-weight in the adjoint representation of the Lie algebra of so(2n).
0
9, 18, 35, 82, 180, 385, 846, 1853, 4034, 8810, 19249, 42014, 91727, 200298, 437316, 954809, 2084746, 4551801, 9938290, 21699138, 47377577, 103443386, 225856667, 493131922, 1076696324, 2350841633, 5132790390, 11206852917, 24468864530
OFFSET
4,1
COMMENTS
Cardinality of the Weyl alternation set corresponding to the zero-weight in the adjoint representation of the Lie algebra of type D and rank n.
LINKS
P. E. Harris, Combinatorial problems related to Kostant's weight multiplicity formula, PhD Dissertation, University of Wisconsin-Milwaukee, 2012.
P. E. Harris, E. Insko, and L. K. Williams, The adjoint representation of a Lie algebra and the support of Kostant's weight multiplicity formula, arXiv preprint arXiv:1401.0055 [math.RT], 2013.
B. Kostant, A Formula for the Multiplicity of a Weight, Proc Natl Acad Sci U S A. 1958 June; 44(6): 588-589.
FORMULA
a(n) = A234597(n) + A234576(n).
a(n) = 3*A234576(n-1) + 2*A234576(n-2) + 6*A234576(n-3) + 2*A234576(n-4).
G.f.: x^4*(2*x^3 + 8*x^2 + 9*x + 9)/(-x^4 - 3*x^3 - x^2 - x + 1). - Ralf Stephan, Jan 05 2014
EXAMPLE
For n = 8, a(n) = 107+73 = 180 and a(n) = 3(34) + 2(14) + 6(7) + 2(4) = 180.
MAPLE
r:=proc(n::nonnegint)
if n<=3 then return 0:
elif n=4 then return 4:
elif n=5 then return 7:
elif n=6 then return 14:
elif n=7 then return 34:
else return
r(n-1)+r(n-2)+3*r(n-3)+r(n-4):
end if;
end proc:
a:=proc(n::nonnegint)
if n<=3 then return 0:
elif n=4 then return 9:
elif n=5 then return 18:
elif n=6 then return 35:
elif n=5 then return 82:
else return
3*r(n-1)+2*r(n-2)+6*r(n-3)+2*r(n-4):
end if;
end proc:
MATHEMATICA
LinearRecurrence[{1, 1, 3, 1}, {9, 18, 35, 82}, 30] (* Jean-François Alcover, Dec 06 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Erik Insko, Dec 28 2013
EXTENSIONS
More terms from Ralf Stephan, Jan 05 2014
STATUS
approved