login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A234463 Binomial(8*n+4,n)/(2*n+1). 9
1, 4, 38, 468, 6545, 98728, 1566040, 25747128, 434824104, 7498246100, 131477423220, 2337053822012, 42016842044268, 762702138530080, 13959382918289880, 257323577200329904, 4773171937236245400, 89028543731246186400, 1668706597425638149302 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=8, r=4.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.

Thomas A. Dowling, Catalan Numbers Chapter 7

Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.

FORMULA

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=8, r=4.

MATHEMATICA

Table[Binomial[8 n + 4, n]/(2 n + 1), {n, 0, 40}] (* Vincenzo Librandi, Dec 26 2013 *)

PROG

(PARI) a(n) = binomial(8*n+4, n)/(2*n+1);

(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^2)^4+x*O(x^n)); polcoeff(B, n)}

(MAGMA) [Binomial(8*n+4, n)/(2*n+1): n in [0..30]]; // Vincenzo Librandi, Dec 26 2013

CROSSREFS

Cf. A000108, A007556, A234461, A234462, A234464, A234465, A234466, A234467, A230390.

Sequence in context: A220543 A220748 A192947 * A194044 A317605 A263376

Adjacent sequences:  A234460 A234461 A234462 * A234464 A234465 A234466

KEYWORD

nonn

AUTHOR

Tim Fulford, Dec 26 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 06:08 EDT 2019. Contains 328106 sequences. (Running on oeis4.)