|
|
A234463
|
|
Binomial(8*n+4,n)/(2*n+1).
|
|
9
|
|
|
1, 4, 38, 468, 6545, 98728, 1566040, 25747128, 434824104, 7498246100, 131477423220, 2337053822012, 42016842044268, 762702138530080, 13959382918289880, 257323577200329904, 4773171937236245400, 89028543731246186400, 1668706597425638149302
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=8, r=4.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..200
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers Chapter 7
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
|
|
FORMULA
|
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=8, r=4.
|
|
MATHEMATICA
|
Table[Binomial[8 n + 4, n]/(2 n + 1), {n, 0, 40}] (* Vincenzo Librandi, Dec 26 2013 *)
|
|
PROG
|
(PARI) a(n) = binomial(8*n+4, n)/(2*n+1);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^2)^4+x*O(x^n)); polcoeff(B, n)}
(Magma) [Binomial(8*n+4, n)/(2*n+1): n in [0..30]]; // Vincenzo Librandi, Dec 26 2013
|
|
CROSSREFS
|
Cf. A000108, A007556, A234461, A234462, A234464, A234465, A234466, A234467, A230390.
Sequence in context: A220543 A220748 A192947 * A194044 A317605 A263376
Adjacent sequences: A234460 A234461 A234462 * A234464 A234465 A234466
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Tim Fulford, Dec 26 2013
|
|
STATUS
|
approved
|
|
|
|