|
|
A234461
|
|
a(n) = binomial(8*n+2,n)/(4*n+1).
|
|
9
|
|
|
1, 2, 17, 200, 2728, 40508, 635628, 10368072, 174047640, 2987139122, 52177566870, 924548764752, 16578073731752, 300252605231600, 5484727796499708, 100933398334075824, 1869468985400220600, 34823332479175275600, 651947852922093741585
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Fuss-Catalan sequence is a(n,p,r) = r*binomial(n*p + r,n)/(n*p + r), this is the case p = 8, r = 2.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..200
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007.
J-C. Aval, Multivariate Fuss-Catalan Numbers, Discrete Math., 308 (2008), 4660-4669.
Gi-Sang Cheon, S.-T. Jin, and L. W. Shapiro, A combinatorial equivalence relation for formal power series, Linear Algebra and its Applications, Volume 491, 15 February 2016, Pages 123-137.
Thomas A. Dowling, Catalan Numbers Chapter 7
Clemens Heuberger, Sarah J. Selkirk, and Stephan Wagner, Enumeration of Generalized Dyck Paths Based on the Height of Down-Steps Modulo k, arXiv:2204.14023 [math.CO], 2022.
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
Wikipedia, Fuss-Catalan number
|
|
FORMULA
|
G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, where p = 8, r = 2.
a(n) = 2*binomial(8n+1,n-1)/n for n>0, a(0)=1. [Bruno Berselli, Jan 19 2014]
A(x^3) = 1/x * series reversion (x/C(x^3)^2), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/2) is the o.g.f. for A007556. - Peter Bala, Oct 14 2015
|
|
MATHEMATICA
|
Table[Binomial[8 n + 2, n]/(4 n + 1), {n, 0, 30}]
|
|
PROG
|
(PARI) a(n) = binomial(8*n+2, n)/(4*n+1);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^4)^2+x*O(x^n)); polcoeff(B, n)}
(MAGMA) [Binomial(8*n+2, n)/(4*n+1): n in [0..30]];
|
|
CROSSREFS
|
Cf. A000108, A007556, A234462, A234463, A234464, A234465, A234466, A234467, A230390.
Sequence in context: A199751 A348766 A126752 * A277768 A333990 A349654
Adjacent sequences: A234458 A234459 A234460 * A234462 A234463 A234464
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Tim Fulford, Dec 26 2013
|
|
STATUS
|
approved
|
|
|
|