login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A234461 a(n) = binomial(8*n+2,n)/(4*n+1). 9
1, 2, 17, 200, 2728, 40508, 635628, 10368072, 174047640, 2987139122, 52177566870, 924548764752, 16578073731752, 300252605231600, 5484727796499708, 100933398334075824, 1869468985400220600, 34823332479175275600, 651947852922093741585 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Fuss-Catalan sequence is a(n,p,r) = r*binomial(n*p + r,n)/(n*p + r), this is the case p = 8, r = 2.

REFERENCES

Gi-Sang Cheon, S.-T. Jin, L. W. Shapiro, A combinatorial equivalence relation for formal power series, Linear Algebra and its Applications, Available online 30 March 2015.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007.

J-C. Aval, Multivariate Fuss-Catalan Numbers, Discrete Math., 308 (2008), 4660-4669.

Thomas A. Dowling, Catalan Numbers Chapter 7

Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.

Wikipedia, Fuss-Catalan number

FORMULA

G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, where p = 8, r = 2.

a(n) = 2*binomial(8n+1,n-1)/n for n>0, a(0)=1. [Bruno Berselli, Jan 19 2014]

A(x^3) = 1/x * series reversion (x/C(x^3)^2), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/2) is the o.g.f. for A007556. - Peter Bala, Oct 14 2015

MATHEMATICA

Table[Binomial[8 n + 2, n]/(4 n + 1), {n, 0, 30}]

PROG

(PARI) a(n) = binomial(8*n+2, n)/(4*n+1);

(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^4)^2+x*O(x^n)); polcoeff(B, n)}

(MAGMA) [Binomial(8*n+2, n)/(4*n+1): n in [0..30]];

CROSSREFS

Cf. A000108, A007556, A234462, A234463, A234464, A234465, A234466, A234467, A230390.

Sequence in context: A242428 A199751 A126752 * A277768 A004029 A114268

Adjacent sequences:  A234458 A234459 A234460 * A234462 A234463 A234464

KEYWORD

nonn,easy

AUTHOR

Tim Fulford, Dec 26 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 15:58 EDT 2019. Contains 328267 sequences. (Running on oeis4.)