|
|
A234211
|
|
Number of (n+1)X(2+1) 0..4 arrays with every 2X2 subblock having the sum of the squares of all six edge and diagonal differences equal to 11
|
|
1
|
|
|
308, 1540, 7348, 38424, 190188, 1029224, 5219076, 28931288, 148987468, 838864504, 4360734660, 24788769080, 129580167628, 740795388728, 3884928235332, 22283140973496, 117075211006540, 672795456240696, 3538587841442884
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 6*a(n-1) +51*a(n-2) -354*a(n-3) -656*a(n-4) +6790*a(n-5) -457*a(n-6) -52786*a(n-7) +47381*a(n-8) +158504*a(n-9) -209462*a(n-10) -148184*a(n-11) +260800*a(n-12) +12192*a(n-13) -94128*a(n-14) +21312*a(n-15)
|
|
EXAMPLE
|
Some solutions for n=5
..1..2..1....2..2..2....1..2..4....0..0..0....0..0..2....1..2..3....1..0..1
..3..3..3....1..0..1....1..3..2....2..1..2....2..1..0....3..1..3....2..0..2
..1..2..1....2..0..2....2..1..3....2..0..0....0..0..2....2..1..2....1..0..1
..3..1..3....1..2..1....1..3..2....1..2..1....2..1..2....3..1..3....0..2..0
..2..1..2....1..3..1....1..2..4....2..0..2....2..0..0....3..2..3....1..2..1
..3..3..3....1..2..1....1..3..4....1..2..1....1..2..1....3..1..3....3..3..1
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|