login
Number of (n+1)X(2+1) 0..4 arrays with every 2X2 subblock having the sum of the squares of all six edge and diagonal differences equal to 11
1

%I #4 Dec 21 2013 09:26:27

%S 308,1540,7348,38424,190188,1029224,5219076,28931288,148987468,

%T 838864504,4360734660,24788769080,129580167628,740795388728,

%U 3884928235332,22283140973496,117075211006540,672795456240696,3538587841442884

%N Number of (n+1)X(2+1) 0..4 arrays with every 2X2 subblock having the sum of the squares of all six edge and diagonal differences equal to 11

%C Column 2 of A234217

%H R. H. Hardin, <a href="/A234211/b234211.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 6*a(n-1) +51*a(n-2) -354*a(n-3) -656*a(n-4) +6790*a(n-5) -457*a(n-6) -52786*a(n-7) +47381*a(n-8) +158504*a(n-9) -209462*a(n-10) -148184*a(n-11) +260800*a(n-12) +12192*a(n-13) -94128*a(n-14) +21312*a(n-15)

%e Some solutions for n=5

%e ..1..2..1....2..2..2....1..2..4....0..0..0....0..0..2....1..2..3....1..0..1

%e ..3..3..3....1..0..1....1..3..2....2..1..2....2..1..0....3..1..3....2..0..2

%e ..1..2..1....2..0..2....2..1..3....2..0..0....0..0..2....2..1..2....1..0..1

%e ..3..1..3....1..2..1....1..3..2....1..2..1....2..1..2....3..1..3....0..2..0

%e ..2..1..2....1..3..1....1..2..4....2..0..2....2..0..0....3..2..3....1..2..1

%e ..3..3..3....1..2..1....1..3..4....1..2..1....1..2..1....3..1..3....3..3..1

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 21 2013