login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234144
a(n) = numerator of Sum_(k=1..n) 1/(2*k - 1)^n.
2
0, 1, 10, 3527, 123296356, 3115356499043, 1733194364791766081374, 376470435881775086250915790503469, 16952748458548438370767527584555153032, 90548635884513844033505877600764150558334149264809109
OFFSET
0,3
COMMENTS
The sequence A234144(n)/A234145(n) is Theta(n, n), as defined by Wolfdieter Lang.
FORMULA
a(n) = numerator of (2^n*Zeta(n) - Zeta(n) - Zeta(n, n+1/2))/2^n.
a(n) = numerator of ((-1/2)^n*(PolyGamma(n-1, 1/2) - PolyGamma(n-1, n+1/2)))/(n-1)!.
A234144(n) / A234145(n) ~ 1.
MAPLE
f:= proc(n) local k; numer(add(1/(2*k-1)^n, k=1..n)); end proc:
map(f, [$0..10]); # Robert Israel, Nov 05 2023
MATHEMATICA
a[n_] := Sum[1/(2*k-1)^n, {k, 1, n}] // Numerator; Table[a[n], {n, 0, 10}]
CROSSREFS
Cf. A164655, A164656, A234145 (denominators).
Sequence in context: A006903 A115481 A154238 * A291676 A249851 A024139
KEYWORD
nonn,frac,easy
AUTHOR
STATUS
approved