login
A233811
Number of (n+1) X (1+1) 0..5 arrays with every 2 X 2 subblock having the sum of the squares of all six edge and diagonal differences equal to 11.
1
96, 428, 1824, 8136, 34848, 155488, 667200, 2977440, 12787200, 57068480, 245195520, 1094334720, 4702809600, 20989561600, 90210201600, 402629644800, 1730534860800, 7723826124800, 33198475776000, 148173756672000
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 30*a(n-2) - 220*a(n-4) + 240*a(n-6).
Empirical g.f.: 4*x*(24 + 107*x - 264*x^2 - 1176*x^3 + 312*x^4 + 1392*x^5) / (1 - 30*x^2 + 220*x^4 - 240*x^6). - Colin Barker, Oct 11 2018
EXAMPLE
Some solutions for n=5:
..2..1....3..2....2..1....3..3....3..1....1..3....5..4....4..3....2..3....3..2
..1..3....2..4....0..2....1..2....3..2....1..2....5..3....5..5....3..1....3..1
..2..1....3..2....0..1....3..1....3..1....1..3....3..4....3..4....2..3....1..2
..1..3....1..3....0..2....1..2....2..1....3..2....2..4....2..2....1..3....3..3
..2..1....2..3....0..1....0..2....1..3....3..1....2..3....1..0....2..3....4..5
..1..3....3..1....2..0....1..2....2..3....2..3....4..4....2..0....3..1....3..5
CROSSREFS
Column 1 of A233818.
Sequence in context: A179825 A304515 A233818 * A233717 A233710 A234083
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 16 2013
STATUS
approved