login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233717
T(n,k) = Number of (n+1) X (k+1) 0..4 arrays with every 2 X 2 subblock having the sum of the squares of the edge differences equal to 14 (14 maximizes T(1,1)).
9
96, 444, 444, 1992, 2624, 1992, 9100, 16004, 16004, 9100, 41256, 103152, 136960, 103152, 41256, 187780, 662008, 1291820, 1291820, 662008, 187780, 853104, 4295540, 12203480, 18407992, 12203480, 4295540, 853104, 3879380, 27795204, 117736088
OFFSET
1,1
COMMENTS
Table starts
.......96........444..........1992............9100.............41256
......444.......2624.........16004..........103152............662008
.....1992......16004........136960.........1291820..........12203480
.....9100.....103152.......1291820........18407992.........265416076
....41256.....662008......12203480.......265416076........5886720368
...187780....4295540.....117736088......3941219232......135854016892
...853104...27795204....1132387344.....58415215048.....3129633625144
..3879380..180350552...10952782784....873119150720....72969887485252
.17632896.1168954616..105752474712..13022224846292..1696131249929176
.80165004.7582779720.1022915229556.194807536465768.39606967139987452
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 8];
k=2: [order 27];
k=3: [order 75].
EXAMPLE
Some solutions for n=3, k=4
..0..0..2..0..2....0..0..0..0..0....0..3..3..3..0....0..3..3..3..0
..1..3..3..3..3....1..3..2..3..2....1..1..4..1..1....0..1..4..1..1
..1..0..2..0..1....0..0..0..3..0....0..3..4..3..4....3..3..3..3..0
..1..3..3..3..1....1..3..1..3..1....0..1..4..1..1....0..1..0..2..0
CROSSREFS
Sequence in context: A304515 A233818 A233811 * A233710 A234083 A234076
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 15 2013
STATUS
approved