login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233737
a(n) = 9*binomial(5*n+9, n)/(5*n+9).
5
1, 9, 81, 759, 7371, 73656, 752913, 7838298, 82832706, 886322710, 9583986555, 104568156819, 1149793519368, 12728471356944, 141747219186705, 1586867219265060, 17848735288114995, 201607141031660871, 2285899896222757346, 26008027474874327190, 296840444852078282610, 3397721117411729991960
OFFSET
0,2
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=5, r=9.
LINKS
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers Chapter 7
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
FORMULA
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, here p=5, r=9.
From Ilya Gutkovskiy, Sep 14 2018: (Start)
E.g.f.: 5F5(9/5,2,11/5,12/5,13/5; 1,5/2,11/4,3,13/4; 3125*x/256).
a(n) ~ 9*5^(5*n+17/2)/(sqrt(Pi)*2^(8*n+39/2)*n^(3/2)). (End)
MATHEMATICA
Table[9 Binomial[5 n + 9, n]/(5 n + 9), {n, 0, 30}]
PROG
(PARI) a(n) = 9*binomial(5*n+9, n)/(5*n+9);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(5/9))^9+x*O(x^n)); polcoeff(B, n)}
(Magma) [9*Binomial(5*n+9, n)/(5*n+9): n in [0..30]];
KEYWORD
nonn
AUTHOR
Tim Fulford, Dec 15 2013
STATUS
approved