OFFSET
0,2
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=5, r=8.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers Chapter 7
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
FORMULA
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=5, r=8.
From Ilya Gutkovskiy, Sep 14 2018: (Start)
E.g.f.: 5F5(8/5,9/5,2,11/5,12/5; 1,9/4,5/2,11/4,3; 3125*x/256).
a(n) ~ 5^(5*n+15/2)/(sqrt(Pi)*2^(8*n+29/2)*n^(3/2)). (End)
MATHEMATICA
Table[8 Binomial[5 n + 8, n]/(5 n + 8), {n, 0, 40}] (* Vincenzo Librandi, Dec 16 2013 *)
PROG
(PARI) a(n) = 8*binomial(5*n+8, n)/(5*n+8);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(5/8))^8+x*O(x^n)); polcoeff(B, n)}
(Magma) [8*Binomial(5*n+8, n)/(5*n+8): n in [0..30]]; // Vincenzo Librandi, Dec 16 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Tim Fulford, Dec 15 2013
STATUS
approved