OFFSET
0,1
LINKS
juantheron, How to evaluate int_0^(pi/2) dx/(1+x^2)/(1+tan x), math.stackexchange, Apr 14 2013
EXAMPLE
0.59738180945180348461311323509087376430643859042555673077032071615503110332498…
MAPLE
Digits := 60 :
# Expand 1/(1+tan x) in a Taylor series around Pi/4 and exchange
# summation and integration.
for dd from 80 to 100 by 10 do
taylor(1/(1+tan(z)), z=Pi/4, dd) ;
gfun[seriestolist](%) ;
c := evalf(%) ;
x := 0.0 ;
for i from 0 to nops(c)-1 do
1/(1+zz^2)*op(i+1, c)*(zz-Pi/4)^i ;
int(%, zz=0..Pi/2) ;
x := x+evalf(%) ;
end do:
print(x) ;
end do:
MATHEMATICA
RealDigits[ NIntegrate[ 1/((1+x^2)(1+Tan[x])), {x, 0, Pi/2}, WorkingPrecision -> 110], 10, 105][[1]] (* Robert G. Wilson v, Sep 29 2014 *)
CROSSREFS
KEYWORD
AUTHOR
R. J. Mathar, Dec 08 2013
STATUS
approved