|
|
A233383
|
|
Decimal expansion of the absolute value of Sum_{n>=1} (-1)^n*sin(1/n).
|
|
3
|
|
|
5, 5, 0, 7, 9, 6, 8, 4, 8, 1, 3, 3, 9, 2, 9, 4, 7, 5, 5, 1, 0, 0, 6, 6, 9, 5, 7, 4, 3, 5, 1, 1, 8, 4, 1, 4, 3, 9, 6, 1, 7, 6, 8, 0, 8, 9, 0, 0, 5, 3, 7, 6, 6, 5, 7, 1, 5, 8, 8, 6, 9, 6, 8, 7, 6, 6, 1, 8, 3, 1, 0, 6, 2, 9, 0, 8, 6, 3, 0, 4, 5, 6, 2, 1, 2, 0, 2, 4, 6, 8, 1, 4, 6, 4, 4, 9, 5, 0, 0, 3, 9, 9, 7, 3, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
If the contribution of the first term, -sin(1) = -A049469, is omitted, the constant becomes Sum_{n>=1} (sin(1/(2n)) - sin(1/(2n+1))) = 0.29067413667396703114243536419518058522...
|
|
LINKS
|
|
|
EXAMPLE
|
0.550796848133929475510066957...
|
|
MAPLE
|
M := 141 :
Digits := 120 :
s := sin(1/2/n)-sin(1/(2*n+1)) :
add(subs(n=i, s), i=1..M) :
pre := evalf(%) :
zetaM := proc(s, M)
local n ;
Zeta(s)-add(1/n^s, n=1..M) ;
evalf(%) ;
end proc:
for dd from 75 to 90 by 5 do
subs(n=1/eps, s) ;
taylor(%, eps=0, dd+1) ;
t := gfun[seriestolist](%, 'ogf') ;
add( op(j, t)*zetaM(j-1, M), j=3..nops(t)) ;
x := pre+% ;
print(x) ;
end do:
# now sum_{n>=1} (-1)^n*sin(1/n) = -0.5570986.
x-sin(1.0) ;
|
|
MATHEMATICA
|
digits = 105; NSum[(-1)^n*Sin[1/n], {n, 1, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits+10] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 24 2014 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|