login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232898
Least positive integer m such that {C(2k,k) + k: k = 1,...,m} contains a complete system of residues modulo n, or 0 if such a number m does not exist.
2
1, 2, 7, 5, 10, 12, 9, 24, 31, 22, 59, 25, 27, 30, 42, 56, 123, 66, 57, 72, 84, 78, 73, 132, 136, 57, 99, 80, 129, 211, 170, 226, 121, 170, 126, 129, 238, 218, 157, 132, 348, 198, 388, 103, 171, 166, 247, 181, 205, 352, 194, 136, 430, 226, 117, 224, 237, 292, 364, 241
OFFSET
1,2
COMMENTS
Conjecture: (i) Let n be any positive integer. Then 0 < a(n) <= n^2/2 + 3. Also, {C(2k,k) - k: k = 1, ..., [n^2/2] + 15} contains a complete system of residues modulo n, where [.] is the floor function.
(ii) For any integer n > 2, neither C(2n,n) + n nor C(2n,n) - n has the form x^m with m > 1.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..250 from Zhi-Wei Sun)
EXAMPLE
a(2) = 2 since C(2*1,1) + 1 = 3 is odd and C(2*2,2) + 2 = 8 is even.
MATHEMATICA
L[m_, n_]:=Length[Union[Table[Mod[Binomial[2k, k]+k, n], {k, 1, m}]]]
Do[Do[If[L[m, n]==n, Print[n, " ", m]; Goto[aa]], {m, 1, n^2/2+3}];
Print[n, " ", counterexample]; Label[aa]; Continue, {n, 1, 60}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 02 2013
STATUS
approved