login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232894
Least positive integer m such that {Catalan(k) - k: k = 1, ..., m} contains a complete system of residues modulo n, or 0 if such a number m does not exist.
2
1, 5, 4, 11, 16, 13, 31, 27, 18, 22, 34, 52, 45, 45, 31, 112, 57, 73, 113, 99, 64, 77, 114, 215, 134, 106, 89, 99, 127, 209, 161, 239, 135, 178, 96, 207, 185, 172, 157, 231, 174, 195, 309, 115, 274, 309, 386, 239, 200, 336, 188, 199, 181, 181, 116, 311, 229, 290, 663, 239
OFFSET
1,2
COMMENTS
Conjecture: (i) Let n be any positive integer. Then 0 < a(n) <= n^2/2 + 7. Also, {Catalan(k) + k: k = 1, ..., [n^2/2] + 23} contains a complete system of residues modulo n, where [.] is the floor function.
(ii) For any integer n > 3, neither Catalan(n) - n nor Catalan(n) + n has the form x^m with m > 1 and x > 1.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..200 from Zhi-Wei Sun)
EXAMPLE
a(2) = 5 since Catalan(k) - k is even for each k = 1, 2, 3, 4, and Catalan(5) - 5 = 37 is odd.
MATHEMATICA
L[m_, n_]:=Length[Union[Table[Mod[CatalanNumber[k]-k, n], {k, 1, m}]]]
Do[Do[If[L[m, n]==n, Print[n, " ", m]; Goto[aa]], {m, 1, n^2/2+7}];
Print[n, " ", counterexample]; Label[aa]; Continue, {n, 1, 60}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 02 2013
STATUS
approved