login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166549
The number of halving steps of the Collatz 3x+1 map to reach 1 starting from 2n-1.
4
0, 5, 4, 11, 13, 10, 7, 12, 9, 14, 6, 11, 16, 70, 13, 67, 18, 10, 15, 23, 69, 20, 12, 66, 17, 17, 9, 71, 22, 22, 14, 68, 19, 19, 11, 65, 73, 11, 16, 24, 16, 70, 8, 21, 21, 59, 13, 67, 75, 18, 18, 56, 26, 64, 72, 45, 10, 23, 15, 23, 61, 31, 69, 31, 77, 20, 20, 28, 58, 28, 12, 66, 74, 74, 17
OFFSET
1,2
COMMENTS
A given term k appears A131450(k) times. - Flávio V. Fernandes, Mar 13 2022
FORMULA
a(n) = A006577(2n-1) - A075680(n).
MAPLE
A006370 := proc(n) if type(n, 'even') then n/2; else 3*n+1 ; end if; end proc:
A006577 := proc(n) a := 0 ; x := n ; while x > 1 do x := A006370(x) ; a := a+1 ; end do; a ; end proc:
A006667 := proc(n) a := 0 ; x := n ; while x > 1 do if type(x, 'even') then x := x/2 ; else x := 3*x+1 ; a := a+1 ; end if; end do; a ; end proc:
A075680 := proc(n) A006667(2*n-1) ; end proc:
A166549 := proc(n) A006577(2*n-1)-A075680(n) ; end: seq(A166549(n), n=1..120) ; # R. J. Mathar, Oct 18 2009
# second Maple program:
b:= proc(n) option remember; `if`(n=1, 0,
1+b(`if`(n::even, n/2, (3*n+1)/2)))
end:
a:= n-> b(2*n-1):
seq(a(n), n=1..75); # Alois P. Heinz, Mar 14 2022
MATHEMATICA
b[n_] := b[n] = If[n == 1, 0, 1 + b[If[EvenQ[n], n/2, (3n+1)/2]]];
a[n_] := b[2n-1];
Table[a[n], {n, 1, 75}] (* Jean-François Alcover, Apr 22 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jimin Park, Oct 16 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Oct 18 2009
STATUS
approved