login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232640
Sequence (or tree) generated by these rules: 1 is in S, and if x is in S, then x + 1 and 2*x + 1 are in S, and duplicates are deleted as they occur.
2
1, 2, 3, 5, 4, 7, 6, 11, 9, 8, 15, 13, 12, 23, 10, 19, 17, 16, 31, 14, 27, 25, 24, 47, 21, 20, 39, 18, 35, 33, 32, 63, 29, 28, 55, 26, 51, 49, 48, 95, 22, 43, 41, 40, 79, 37, 36, 71, 34, 67, 65, 64, 127, 30, 59, 57, 56, 111, 53, 52, 103, 50, 99, 97, 96, 191
OFFSET
1,2
COMMENTS
Let S be the set of numbers defined by these rules: 1 is in S, and if x is in S, then x + 1 and 2*x + 1 are in S. Then S is the set of positive integers, which arise in generations. Deleting duplicates as they occur, the generations are given by g(1) = (1), g(2) = (2,3), g(3) = (5,4,7), etc. Concatenating these gives A232640, a permutation of the positive integers. The number of numbers in g(n) is F(n), where F = A000045, the Fibonacci numbers. It is helpful to show the results as a tree with the terms of S as nodes, an edge from x to x + 1 if x + 1 has not already occurred, and an edge from x to 2*x + 1 if 2*x + 1 has not already occurred.
LINKS
FORMULA
Conjecture: a(n) = A135533(A003754(n+1)) for n > 0. - Mikhail Kurkov, Feb 26 2023
EXAMPLE
Each x begets x + 1 and 2*x + 1, but if either has already occurred it is deleted. Thus, 1 begets 2 and 3; then 2 begets only 5, and 3 begets (4,7), so that g(3) = (5,4,7).
MATHEMATICA
z = 14; g[1] = {1}; g[2] = {2}; g[n_] := Riffle[g[n - 1] + 1, 2 g[n - 1] + 1]; j[2] = Join[g[1], g[2]]; j[n_] := Join[j[n - 1], g[n]]; g1[n_] := DeleteDuplicates[DeleteCases[g[n], Alternatives @@ j[n - 1]]]; g1[1] = g[1]; g1[2] = g[2]; t = Flatten[Table[g1[n], {n, 1, z}]] (* this sequence *)
Table[Length[g1[n]], {n, 1, z}] (* A000045 *)
Flatten[Table[Position[t, n], {n, 1, 200}]] (* A232641 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 28 2013
STATUS
approved