login
A232090
Minimal possible denominator for a sum of the form 1 +/- 1/2 +/- 1/3 +/- ... +/- 1/n.
3
1, 2, 6, 12, 60, 20, 140, 280, 2520, 2520, 27720, 27720, 360360, 360360, 72072, 144144, 2450448, 272272, 5173168, 5173168, 739024, 739024, 16997552, 16997552, 424938800, 424938800, 11473347600, 11473347600, 332727080400, 332727080400
OFFSET
1,2
COMMENTS
Differs from A203811 from a(18)=272272 on, and from A002805 and A231693 from a(15)=72072 on.
LINKS
F. T. Adams-Watters, Re: Reciprocal Recaman, SeqFan list, Nov 17 2013
MATHEMATICA
nMax = 19; d = {0}; Table[d = Flatten[{d + 1/n, d - 1/n}]; Min[Denominator[d]], {n, nMax}] (* T. D. Noe, Nov 19 2013 *)
PROG
(PARI) for(n=0, 19, m=(n+1)!; for(k=0, 2^n-1, m=min(denominator(sum(j=2, n+1, (-1)^bittest(k, j-2)/j, 1)), m)); print1(m", "))
CROSSREFS
Cf. A061195 (minimal possible positive numerator).
Sequence in context: A285079 A119862 A111936 * A203811 A002805 A231693
KEYWORD
nonn
AUTHOR
M. F. Hasler, Nov 18 2013
EXTENSIONS
Terms a(21)-a(30) from David W. Wilson, Nov 19 2013
STATUS
approved