login
A111936
Denominator of n-th term of the harmonic series after removal of all terms 1/m from Sum_{m=1..n} 1/m for which m contains a 9 in its decimal representation.
1
1, 2, 6, 12, 60, 20, 140, 280, 280, 3080, 9240, 120120, 120120, 40040, 80080, 1361360, 12252240, 2450448, 2450448, 2450448, 56360304, 56360304, 1409007600, 1409007600, 4227022800, 4227022800, 4227022800, 131037706800, 262075413600
OFFSET
1,2
COMMENTS
Numerator = A111935;
lim_{n->infinity} A111935(n)/a(n) = C < 80.
REFERENCES
G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part One, Chap. 3, sect. 4, Problem 124.
EXAMPLE
n=9: 1/1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/10 = 789/280, therefore a(9) = 280.
MATHEMATICA
Denominator[Accumulate[DeleteCases[Table[1/n, {n, 40}], _?(MemberQ[ IntegerDigits[ Denominator[#]], 9]&)]]] (* Harvey P. Dale, Mar 05 2013 *)
PROG
(Magma) a:=[k:k in [1..100]| not 9 in Intseq(k)]; [Denominator( &+[1/a[m]: m in [1..n]]): n in [1..30] ]; // Marius A. Burtea, Dec 29 2019
CROSSREFS
Cf. A002805, A007095, A082838, A111935 (numerators).
Sequence in context: A083001 A285079 A119862 * A232090 A203811 A002805
KEYWORD
nonn,base,frac
AUTHOR
Reinhard Zumkeller, Aug 22 2005
EXTENSIONS
Definition edited by N. J. A. Sloane, Dec 30 2019
STATUS
approved