login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111938
a(n) = n times number of divisors of n of form 4m+1 - n times number of divisors of form 4m+3.
2
1, 2, 0, 4, 10, 0, 0, 8, 9, 20, 0, 0, 26, 0, 0, 16, 34, 18, 0, 40, 0, 0, 0, 0, 75, 52, 0, 0, 58, 0, 0, 32, 0, 68, 0, 36, 74, 0, 0, 80, 82, 0, 0, 0, 90, 0, 0, 0, 49, 150, 0, 104, 106, 0, 0, 0, 0, 116, 0, 0, 122, 0, 0, 64, 260, 0, 0, 136, 0, 0, 0, 72, 146, 148, 0, 0, 0, 0, 0, 160, 81, 164
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = p^e if p = 2; (e+1)*p^e if p == 1 (mod 4); ((1+(-1)^e)/2)*p^e if p == 3 (mod 4).
a(n) = n * A002654(n).
G.f.: Sum_{k>0} k(x^k-x^(3k))/(1+x^(2k))^2 = Sum_{k>0} -(-1)^k(2k-1)x^(2k-1)/(1-x^(2k-1))^2.
G.f.: xd/dx(theta_3(x)^2)/4. - Michael Somos, Nov 07 2005
G.f.: (1/4)* Sum_{u,v} (u*u +v*v)* x^(u*u +v*v). - Michael Somos, Jun 14 2007
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi/8 = 0.392699... (A019675). - Amiram Eldar, Oct 13 2022
MATHEMATICA
f[p_, e_] := If[Mod[p, 4] == 1, e + 1, (1 + (-1)^e)/2] * p^e; f[2, e_] := 2^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 13 2022 *)
PROG
(PARI) a(n)=if(n<1, 0, n*sumdiv(n, d, (d%4==1)-(d%4==3)))
(PARI) {a(n)=local(r); if(n<1, 0, r=sqrtint(n); sum(x=-r, r, sum(y=-r, r, if(x^2+y^2==n, (x+y)^2) ))/4 )} \\ Michael Somos, Sep 12 2005
(PARI) {a(n)=if(n<1, 0, n*polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1+x*O(x^n))^2, n)/4 )} \\ Michael Somos, Sep 12 2005
CROSSREFS
Sequence in context: A358564 A077119 A002938 * A224822 A246928 A167341
KEYWORD
nonn,mult
AUTHOR
Michael Somos, Aug 21 2005
STATUS
approved