login
A232000
Number of (3+1)X(n+1) 0..1 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to one
1
25, 156, 1024, 5778, 28900, 155496, 863041, 4712418, 25553025, 138835035, 755645121, 4112506265, 22371783184, 121697641615, 662076769761, 3601973220144, 19595814544656, 106606560821538, 579971141108100
OFFSET
1,1
COMMENTS
Row 3 of A231997
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) +44*a(n-3) +88*a(n-4) +244*a(n-5) +412*a(n-6) +785*a(n-7) +1313*a(n-8) +1564*a(n-9) +3248*a(n-10) -2968*a(n-11) -18164*a(n-12) -7660*a(n-13) +22974*a(n-14) +14538*a(n-15) -22428*a(n-16) -21672*a(n-17) +9720*a(n-18) +19660*a(n-19) +6068*a(n-20) -7822*a(n-21) -8466*a(n-22) +2740*a(n-23) +8928*a(n-24) +3864*a(n-25) -748*a(n-26) -1060*a(n-27) -1661*a(n-28) -925*a(n-29) -244*a(n-30) -212*a(n-31) -16*a(n-32) -32*a(n-33) -3*a(n-35) +a(n-36) for n>38
EXAMPLE
Some solutions for n=5
..0..0..0..0..1..0....1..0..0..0..0..0....1..0..0..0..0..0....0..0..0..0..0..0
..0..0..0..1..0..0....0..0..1..0..0..1....0..1..0..1..0..0....0..0..1..0..1..1
..0..0..0..0..1..0....0..0..0..0..1..0....1..0..1..1..1..1....1..1..0..0..0..0
..1..0..0..0..0..0....1..0..0..0..0..1....0..0..0..0..0..0....0..0..0..1..0..0
CROSSREFS
Sequence in context: A049522 A084073 A049523 * A260046 A316948 A139729
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 16 2013
STATUS
approved