login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231998
Number of (1+1) X (n+1) 0..1 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to one.
1
4, 6, 16, 39, 81, 168, 361, 780, 1681, 3612, 7744, 16620, 35721, 76755, 164836, 354006, 760384, 1633275, 3508129, 7535088, 16184529, 34762680, 74666881, 160377096, 344473600, 739894200, 1589218225, 3413480691, 7331811876, 15747991350
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 3*a(n-3) + 3*a(n-4) + 3*a(n-5) + 3*a(n-6) - 2*a(n-8) - a(n-9).
Empirical g.f.: x*(4 + 2*x + 10*x^2 + 11*x^3 + 12*x^4 + 9*x^5 - 2*x^6 - 7*x^7 - 3*x^8) / ((1 + x^2 - x^3)*(1 + x^2 + x^3)*(1 - x - 2*x^2 - x^3)). - Colin Barker, Oct 01 2018
EXAMPLE
Some solutions for n=7:
..0..0..0..1..0..0..1..0....0..0..0..1..1..0..0..0....0..0..0..1..0..0..0..0
..1..0..0..0..0..0..0..1....0..0..0..0..0..1..0..0....1..0..0..0..1..0..0..0
CROSSREFS
Row 1 of A231997.
Sequence in context: A076066 A227178 A165799 * A056421 A032295 A072279
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 16 2013
STATUS
approved