%I #4 Nov 16 2013 13:42:09
%S 25,156,1024,5778,28900,155496,863041,4712418,25553025,138835035,
%T 755645121,4112506265,22371783184,121697641615,662076769761,
%U 3601973220144,19595814544656,106606560821538,579971141108100
%N Number of (3+1)X(n+1) 0..1 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to one
%C Row 3 of A231997
%H R. H. Hardin, <a href="/A232000/b232000.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n-1) +44*a(n-3) +88*a(n-4) +244*a(n-5) +412*a(n-6) +785*a(n-7) +1313*a(n-8) +1564*a(n-9) +3248*a(n-10) -2968*a(n-11) -18164*a(n-12) -7660*a(n-13) +22974*a(n-14) +14538*a(n-15) -22428*a(n-16) -21672*a(n-17) +9720*a(n-18) +19660*a(n-19) +6068*a(n-20) -7822*a(n-21) -8466*a(n-22) +2740*a(n-23) +8928*a(n-24) +3864*a(n-25) -748*a(n-26) -1060*a(n-27) -1661*a(n-28) -925*a(n-29) -244*a(n-30) -212*a(n-31) -16*a(n-32) -32*a(n-33) -3*a(n-35) +a(n-36) for n>38
%e Some solutions for n=5
%e ..0..0..0..0..1..0....1..0..0..0..0..0....1..0..0..0..0..0....0..0..0..0..0..0
%e ..0..0..0..1..0..0....0..0..1..0..0..1....0..1..0..1..0..0....0..0..1..0..1..1
%e ..0..0..0..0..1..0....0..0..0..0..1..0....1..0..1..1..1..1....1..1..0..0..0..0
%e ..1..0..0..0..0..0....1..0..0..0..0..1....0..0..0..0..0..0....0..0..0..1..0..0
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 16 2013