login
A231926
Working in base 6: a(0)=0, thereafter a(n+1) is the smallest number not already in the sequence such that the bits of a(n) and a(n+1) together can be rearranged to form a palindrome.
7
0, 11, 1, 10, 100, 12, 2, 20, 101, 22, 3, 13, 31, 103, 30, 110, 33, 4, 14, 41, 104, 40, 114, 24, 42, 112, 21, 102, 120, 201, 210, 1000, 105, 15, 5, 25, 52, 115, 35, 53, 113, 23, 32, 121, 44, 55, 111, 51, 122, 133, 144, 155, 212, 221, 313, 331, 414, 441, 515, 551, 1001
OFFSET
0,2
COMMENTS
This is a permutation of the nonnegative integers in base 6 - see the Comments in A228407 for the proof.
MATHEMATICA
a[0] = 0; a[n_] := a[n] = Block[{k = 1, idm = IntegerDigits[ a[n - 1], 6], t = a@# & /@ Range[n - 1]}, Label[ start]; While[ MemberQ[t, k], k++]; While[ Select[ Permutations[ Join[ idm, IntegerDigits[k, 6]]], #[[1]] != 0 && # == Reverse@# &] == {}, k++; Goto[ start]]; k]; s = Array[a, 60, 0]; FromDigits@# & /@ IntegerDigits[s, 6]
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved