login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230891
Working in base 2: a(0)=0, thereafter a(n+1) is the smallest number not already in the sequence such that the bits of a(n) and a(n+1) together can be rearranged to form a palindrome.
12
0, 11, 1, 10, 100, 111, 1000, 101, 110, 1001, 1010, 1100, 1111, 10000, 1011, 1101, 1110, 10001, 10010, 10100, 10111, 11000, 11011, 11101, 11110, 100000, 10011, 10101, 10110, 11001, 11010, 11100, 11111, 100001, 100010, 100100, 100111, 101000, 101011, 101101, 101110, 110000, 110011, 110101, 110110, 111001
OFFSET
0,2
COMMENTS
A binary version of A228407.
The palindrome must be a proper binary number, i.e. must begin with 1 (if it is > 0). Also, the union of the bits of a(n) and a(n+1) cannot contain both an odd number of 0's and an odd number of 1's.
Just as for A228407, we can ask: does every number appear? The answer is yes - see the Comments in A228407.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 0..30000 (terms 0..1024 from Robert G. Wilson v).
MATHEMATICA
a[0] = 0; a[n_] := a[n] = Block[{k = 1, idm = IntegerDigits[ a[n - 1], 2], t = a@# & /@ Range[n - 1]}, Label[ start]; While[ MemberQ[t, k], k++]; While[ Select[ Permutations[ Join[idm, IntegerDigits[k, 2]]], #[[1]] != 0 && # == Reverse@# &] == {}, k++; Goto[start]]; k]; s = Array[a, 46, 0]; FromDigits@# & /@ IntegerDigits[s, 2] (* Robert G. Wilson v, Dec 31 2013 *)
PROG
(Python)
from collections import Counter
A230891_list, l, s, b = [0, 11], Counter('11'), 1, {3}
for _ in range(30001):
i = s
while True:
if i not in b:
li, o = Counter(bin(i)[2:]), 0
for d in (l+li).values():
if d % 2:
if o > 0:
break
o += 1
else:
A230891_list.append(int(bin(i)[2:]))
l = li
b.add(i)
while s in b:
b.remove(s)
s += 1
break
i += 1 # Chai Wah Wu, Jun 19 2016
CROSSREFS
Cf. A228407, A230892 (these numbers written in base 10).
Sequence in context: A231924 A231922 A231920 * A063431 A266327 A274216
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Nov 11 2013
STATUS
approved