login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231807
Number of endofunctions on [n] with distinct cardinalities of the nonempty preimages.
3
1, 1, 2, 21, 52, 305, 7836, 24703, 155688, 1034433, 67124260, 235173191, 1728147312, 11309344813, 106962615592, 14055613872945, 55558358852176, 450373499691137, 3156524223157332, 28327606849223119, 307533111218771040, 81782486813477643501
OFFSET
0,3
COMMENTS
Number of endofunctions f:{1,...,n}-> {1,...,n} such that (1<=i<j<=n and |f^(-1)(i)|>0 and |f^(-1)(j)|>0) implies |f^(-1)(i)| != |f^(-1)(j)|.
LINKS
FORMULA
a(n) = n! * Sum_{lambda} multinomial(n;lambda)/(n-|lambda|)!, where lambda ranges over all partitions of n into distinct parts (A118457).
EXAMPLE
a(3) = 3! * (multinomial(3;3)/2! + multinomial(3;2,1)/1!) = 3+18 = 21: (1,1,1), (2,2,2), (3,3,3), (1,1,2), (1,1,3), (1,2,1), (1,3,1), (2,1,1), (3,1,1), (2,2,1), (2,2,3), (2,1,2), (2,3,2), (1,2,2), (3,2,2), (3,3,1), (3,3,2), (3,1,3), (3,2,3), (1,3,3), (2,3,3).
a(4) = 52: (1,1,1,1), (1,1,1,2), (1,1,1,3), ..., (4,4,4,2), (4,4,4,3), (4,4,4,4).
MAPLE
b:= proc(t, i, u) option remember; `if`(t=0, 1, `if`(i<1, 0,
b(t, i-1, u) +`if`(i>t, 0, b(t-i, i-1, u-1)*u*binomial(t, i))))
end:
a:= n-> b(n$3):
seq(a(n), n=0..25);
MATHEMATICA
b[t_, i_, u_] := b[t, i, u] = If[t == 0, 1, If[i < 1, 0, b[t, i - 1, u] + If[i > t, 0, b[t - i, i - 1, u - 1] u Binomial[t, i]]]];
a[n_] := b[n, n, n];
a /@ Range[0, 25] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz *)
CROSSREFS
Column k=1 of A231915.
Sequence in context: A042455 A245546 A074875 * A351118 A097718 A180232
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 13 2013
STATUS
approved