login
A231806
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with no element having a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors equal to one
9
5, 13, 13, 32, 61, 32, 79, 252, 252, 79, 200, 1120, 1699, 1120, 200, 500, 5294, 12044, 12044, 5294, 500, 1249, 23965, 92380, 157633, 92380, 23965, 1249, 3133, 107961, 678081, 2192216, 2192216, 678081, 107961, 3133, 7845, 492274, 4939746, 28305214
OFFSET
1,1
COMMENTS
Table starts
.....5.......13.........32...........79.............200................500
....13.......61........252.........1120............5294..............23965
....32......252.......1699........12044...........92380.............678081
....79.....1120......12044.......157633.........2192216...........28305214
...200.....5294......92380......2192216........55365917.........1260742591
...500....23965.....678081.....28305214......1260742591........49517022951
..1249...107961....4939746....366087332.....28958572406......1970546390784
..3133...492274...36427030...4826593439....681634049374.....80724891499437
..7845..2241508..268422913..63283320895..15907022844385...3270901271636533
.19640.10179136.1972567930.827033366868.369796154636660.131957283104436587
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) +5*a(n-3) -2*a(n-5) -4*a(n-6)
k=2: [order 20]
k=3: [order 45]
EXAMPLE
Some solutions for n=4 k=4
..0..0..1..0..1....0..0..1..0..0....0..0..0..1..0....0..1..0..1..0
..0..1..0..0..0....1..0..0..0..0....0..1..0..0..0....0..0..0..0..0
..1..0..0..0..1....1..0..0..1..1....0..1..1..0..0....0..0..0..0..0
..1..0..0..0..1....0..1..0..0..0....0..0..1..0..1....0..1..0..0..1
..0..0..0..0..1....0..0..1..0..0....0..0..0..0..0....1..0..0..0..0
CROSSREFS
Sequence in context: A235337 A151994 A321992 * A183782 A341751 A244435
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 13 2013
STATUS
approved