login
A231720
a(0)=1, after which, for any n uniquely written as du*u! + ... + d2*2! + d1*1! (each di in range 0..i), a(n) = (du+1)*(u+1)! + ... + (d2+1)*3! + (d1+1)*2! + 1; the natural numbers with their factorial base representation (A007623) shifted left one step and each digit incremented by one, converted back to decimal.
4
1, 5, 15, 17, 21, 23, 57, 59, 63, 65, 69, 71, 81, 83, 87, 89, 93, 95, 105, 107, 111, 113, 117, 119, 273, 275, 279, 281, 285, 287, 297, 299, 303, 305, 309, 311, 321, 323, 327, 329, 333, 335, 345, 347, 351, 353, 357, 359, 393, 395, 399, 401, 405, 407, 417, 419
OFFSET
0,2
LINKS
FORMULA
a(0)=1, and for n>=1, a(n) = A220655(A153880(n)).
EXAMPLE
1 has a factorial base representation A007623(1) = '1'. This shifted once left is '10', and when each digit is incremented by one, this will be '21', and 2*2! + 1*1! = 5 (also A007623(5) = '21'), thus a(1)=5.
2 has a factorial base representation '10'. This shifted once left is '100', and with each digit incremented, makes '211'. 2*3! + 1*2! + 1*1! = 15, thus a(2)=15.
PROG
(Scheme)
;; Standalone iterative implementation:
(define (A231720 n) (let loop ((n n) (z 1) (i 2) (f 2)) (cond ((zero? n) z) (else (loop (quotient n i) (+ (* f (+ 1 (remainder n i))) z) (+ 1 i) (* f (+ i 1)))))))
CROSSREFS
Subset of A227157. Cf. A007623, A153880, A220655.
Sequence in context: A065908 A297124 A166503 * A134453 A370919 A174598
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Nov 29 2013
STATUS
approved